New Student Offer Use Code - HELLO

Join Here

Simplification Quiz With Solution: Part 3

Published on Wednesday, May 10, 2017
What approximate value should come in place of x in the following questions?
1. √289.19 × (2.08) ÷ 10.97 = x
a. 2
b. 3
c. 5
d. 6
d. 4
2. 1884 ÷ 144.89 + 6.99 + (x)² = 69.09
a. 4
b. 9
c. 6
d. 7
e. 8

3. 1
2³ + (1.2)² + (1.02)1 + (1.002)° = x
a. 1730
b. 1720
c. 1750
d. 1700
e. 1680

4. [(3/8 × 14/2) ÷ (2.5 – 0.8)]
² = x
a. 1.6
b. 2.4
c. 4.1
d. 5.2
e. 6.8

5. 33.99√x + 42.0032√x = 76/12.998 × (x)
a. 81
b. 72
c. 169
d. 121
e. 144

6. 94.95 × 13.03 + √35.98 × 14.99 = 53 × √x
a. 25
b. 144
c. 225
d. 625
e. 900

7. 50.001% of 99.99 ÷ 49.999 = x
a. 1
b. 0.1
c. 0.01
d. 0.02
e. None of these

8. x% of 398 + 31% of 993 = 403.35
a. 46
b. 24
c. 18
d. 32
e. None of these

9. (16 × 4)
³ ÷ (4) × (2 × 8)² = (4)x
a. 5
b. 6
c. 3
d. 8
e. None of these

10. √2400 - √1220 + √440 = x
a. 59
b. 35
c. 44
d. 25
e. 30

Answers:

Sol 1.

B (3)
Sol: √289 × 2 ÷ 11
      = 17 × 2 ÷ 11
      Apply BODMAS rule,
      X = 3.09 ≈ 3  

Sol 2.

D (7)
Sol: 1884 ≈1885
      1885 ÷ 145 + 7 + (x)2 = 69
      13 + 7 + (x)2 = 69
       (x)2 = 69 – 20 = 49
       X = 7        

Sol 3.

A (1730)
Sol: 1728 + 1.44 + 1.02 + 1(since x0 = 1)
      X = 1731.46 ≈ 1730

Sol 4.

B (2.4)
Sol: [(21/8) ÷ (1.7)]2 = X
      [1.54]2 = X
2.31 = X
2.4 ≈ X

Sol 5.

C (169)
Sol: 34√X + 42√X = 76/13 X
      2√X (17 + 21) = 6X
      38 = 3√X
      13 = √X
      169 = X

Sol 6.

D (625)
Sol: 95 × 13 + √36 × 15 = 53 √X
     1235 + 90 = 53 √X
     1325/53 = √X
     25 = √X
     625 = X

Sol 7.

A (1)
Sol: Taking the approximate values,
       50/100 × 100 ÷ 40 = X
       5/4 = X
       1.25 = X
       1 ≈ X

Sol 8.

B (24)
Sol: we can take the approximate values, so
      X/100 × 400 + 31/100 × 990 = 403
     4X + 307 = 403
     4X = 96
      X = 24

Sol 9.

D (8)
Sol: (4)9 ÷ (4)5 × (4)4 = (4)x
          (4)x = (4)4 × (4)4
             = (4)4+4 = (4)8
         X = 8

Sol 10.

B (35)
Sol: √2400 ≈ 49, √1220 ≈ 35, √440 ≈ 21
    X = 49 – 35 + 21
       = 70 – 35
       = 35
ebook store

About Me

Ramandeep Singh

Ramandeep Singh - Educator

I'm Ramandeep Singh, your guide to banking and insurance exams. With 14 years of experience and over 5000 successful selections, I understand the path to success firsthand, having transitioned from Dena Bank and SBI. I'm passionate about helping you achieve your banking and insurance dreams.

  • Follow me:
Close Menu
Close Menu